ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.11069
26
2

Combining Federated Learning and Control: A Survey

12 July 2024
Jakob Weber
Markus Gurtner
A. Lobe
Adrian Trachte
Andreas Kugi
    FedML
    AI4CE
ArXivPDFHTML
Abstract

This survey provides an overview of combining Federated Learning (FL) and control to enhance adaptability, scalability, generalization, and privacy in (nonlinear) control applications. Traditional control methods rely on controller design models, but real-world scenarios often require online model retuning or learning. FL offers a distributed approach to model training, enabling collaborative learning across distributed devices while preserving data privacy. By keeping data localized, FL mitigates concerns regarding privacy and security while reducing network bandwidth requirements for communication. This survey summarizes the state-of-the-art concepts and ideas of combining FL and control. The methodical benefits are further discussed, culminating in a detailed overview of expected applications, from dynamical system modeling over controller design, focusing on adaptive control, to knowledge transfer in multi-agent decision-making systems.

View on arXiv
Comments on this paper