ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.12487
25
1

Application of Prompt Learning Models in Identifying the Collaborative Problem Solving Skills in an Online Task

17 July 2024
Mengxiao Zhu
Xin Wang
Xiantao Wang
Zihang Chen
Wei Huang
ArXivPDFHTML
Abstract

Collaborative problem solving (CPS) competence is considered one of the essential 21st-century skills. To facilitate the assessment and learning of CPS competence, researchers have proposed a series of frameworks to conceptualize CPS and explored ways to make sense of the complex processes involved in collaborative problem solving. However, encoding explicit behaviors into subskills within the frameworks of CPS skills is still a challenging task. Traditional studies have relied on manual coding to decipher behavioral data for CPS, but such coding methods can be very time-consuming and cannot support real-time analyses. Scholars have begun to explore approaches for constructing automatic coding models. Nevertheless, the existing models built using machine learning or deep learning techniques depend on a large amount of training data and have relatively low accuracy. To address these problems, this paper proposes a prompt-based learning pre-trained model. The model can achieve high performance even with limited training data. In this study, three experiments were conducted, and the results showed that our model not only produced the highest accuracy, macro F1 score, and kappa values on large training sets, but also performed the best on small training sets of the CPS behavioral data. The application of the proposed prompt-based learning pre-trained model contributes to the CPS skills coding task and can also be used for other CSCW coding tasks to replace manual coding.

View on arXiv
Comments on this paper