ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.12789
25
0

Generalisation to unseen topologies: Towards control of biological neural network activity

17 June 2024
Laurens Engwegen
Daan Brinks
Wendelin Bohmer
    MedIm
    AI4CE
ArXivPDFHTML
Abstract

Novel imaging and neurostimulation techniques open doors for advancements in closed-loop control of activity in biological neural networks. This would allow for applications in the investigation of activity propagation, and for diagnosis and treatment of pathological behaviour. Due to the partially observable characteristics of activity propagation, through networks in which edges can not be observed, and the dynamic nature of neuronal systems, there is a need for adaptive, generalisable control. In this paper, we introduce an environment that procedurally generates neuronal networks with different topologies to investigate this generalisation problem. Additionally, an existing transformer-based architecture is adjusted to evaluate the generalisation performance of a deep RL agent in the presented partially observable environment. The agent demonstrates the capability to generalise control from a limited number of training networks to unseen test networks.

View on arXiv
Comments on this paper