ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.14076
25
4

Domain-Specific Pretraining of Language Models: A Comparative Study in the Medical Field

19 July 2024
Tobias Kerner
    ELM
    LM&MA
ArXivPDFHTML
Abstract

There are many cases where LLMs are used for specific tasks in a single domain. These usually require less general, but more domain-specific knowledge. Highly capable, general-purpose state-of-the-art language models like GPT-4 or Claude-3-opus can often be used for such tasks, but they are very large and cannot be run locally, even if they were not proprietary. This can be a problem when working with sensitive data. This paper focuses on domain-specific and mixed-domain pretraining as potentially more efficient methods than general pretraining for specialized language models. We will take a look at work related to domain-specific pretraining, specifically in the medical area, and compare benchmark results of specialized language models to general-purpose language models.

View on arXiv
Comments on this paper