ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15508
20
0

Compensate Quantization Errors+: Quantized Models Are Inquisitive Learners

22 July 2024
Yifei Gao
Jie Ou
Lei Wang
Fanhua Shang
Jaji Wu
Junguo Cheng
    MQ
ArXivPDFHTML
Abstract

Large Language Models (LLMs) showcase remarkable performance and robust deductive capabilities, yet their expansive size complicates deployment and raises environmental concerns due to substantial resource consumption. The recent development of a quantization technique known as Learnable Singular-value Increment (LSI) has addressed some of these quantization challenges. Leveraging insights from LSI and our extensive research, we have developed innovative methods that enhance the performance of quantized LLMs, particularly in low-bit settings. Our methods consistently deliver state-of-the-art results across various quantization scenarios and offer deep theoretical insights into the quantization process, elucidating the potential of quantized models for widespread application.

View on arXiv
Comments on this paper