ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.16008
45
4

Boosting Reward Model with Preference-Conditional Multi-Aspect Synthetic Data Generation

22 July 2024
Jiaming Shen
Ran Xu
Yennie Jun
Zhen Qin
Tianqi Liu
Carl Yang
Yi Liang
Simon Baumgartner
Michael Bendersky
    SyDa
ArXivPDFHTML
Abstract

Reward models (RMs) are crucial for aligning large language models (LLMs) with human preferences. They are trained using preference datasets where each example consists of one input prompt, two responses, and a preference label. As curating a high-quality human labeled preference dataset is both time-consuming and expensive, people often rely on existing powerful LLMs for preference label generation. This can potentially introduce noise and impede RM training. In this work, we present RMBoost, a novel synthetic preference data generation paradigm to boost reward model quality. Unlike traditional methods, which generate two responses before obtaining the preference label, RMBoost first generates one response and selects a preference label, followed by generating the second more (or less) preferred response conditioned on the pre-selected preference label and the first response. This approach offers two main advantages. First, RMBoost reduces labeling noise since preference pairs are constructed intentionally. Second, RMBoost facilitates the creation of more diverse responses by incorporating various quality aspects (e.g., helpfulness, relevance, completeness) into the prompts. We conduct extensive experiments across three diverse datasets and demonstrate that RMBoost outperforms other synthetic preference data generation techniques and significantly boosts the performance of four distinct reward models.

View on arXiv
@article{shen2025_2407.16008,
  title={ Boosting Reward Model with Preference-Conditional Multi-Aspect Synthetic Data Generation },
  author={ Jiaming Shen and Ran Xu and Yennie Jun and Zhen Qin and Tianqi Liu and Carl Yang and Yi Liang and Simon Baumgartner and Michael Bendersky },
  journal={arXiv preprint arXiv:2407.16008},
  year={ 2025 }
}
Comments on this paper