ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.16048
15
0

HIERVAR: A Hierarchical Feature Selection Method for Time Series Analysis

22 July 2024
Alireza Keshavarzian
S. Valaee
ArXivPDFHTML
Abstract

Time series classification stands as a pivotal and intricate challenge across various domains, including finance, healthcare, and industrial systems. In contemporary research, there has been a notable upsurge in exploring feature extraction through random sampling. Unlike deep convolutional networks, these methods sidestep elaborate training procedures, yet they often necessitate generating a surplus of features to comprehensively encapsulate time series nuances. Consequently, some features may lack relevance to labels or exhibit multi-collinearity with others. In this paper, we propose a novel hierarchical feature selection method aided by ANOVA variance analysis to address this challenge. Through meticulous experimentation, we demonstrate that our method substantially reduces features by over 94% while preserving accuracy -- a significant advancement in the field of time series analysis and feature selection.

View on arXiv
Comments on this paper