ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.17946
11
1

Quantum-Inspired Evolutionary Algorithms for Feature Subset Selection: A Comprehensive Survey

25 July 2024
Yelleti Vivek
V. Ravi
P. R. Krishna
ArXivPDFHTML
Abstract

The clever hybridization of quantum computing concepts and evolutionary algorithms (EAs) resulted in a new field called quantum-inspired evolutionary algorithms (QIEAs). Unlike traditional EAs, QIEAs employ quantum bits to adopt a probabilistic representation of the state of a feature in a given solution. This unprecedented feature enables them to achieve better diversity and perform global search, effectively yielding a tradeoff between exploration and exploitation. We conducted a comprehensive survey across various publishers and gathered 56 papers. We thoroughly analyzed these publications, focusing on the novelty elements and types of heuristics employed by the extant quantum-inspired evolutionary algorithms (QIEAs) proposed to solve the feature subset selection (FSS) problem. Importantly, we provided a detailed analysis of the different types of objective functions and popular quantum gates, i.e., rotation gates, employed throughout the literature. Additionally, we suggested several open research problems to attract the attention of the researchers.

View on arXiv
Comments on this paper