ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.18249
20
4

Trajectory-aligned Space-time Tokens for Few-shot Action Recognition

25 July 2024
Pulkit Kumar
Namitha Padmanabhan
Luke Luo
Sai Saketh Rambhatla
Abhinav Shrivastava
ArXivPDFHTML
Abstract

We propose a simple yet effective approach for few-shot action recognition, emphasizing the disentanglement of motion and appearance representations. By harnessing recent progress in tracking, specifically point trajectories and self-supervised representation learning, we build trajectory-aligned tokens (TATs) that capture motion and appearance information. This approach significantly reduces the data requirements while retaining essential information. To process these representations, we use a Masked Space-time Transformer that effectively learns to aggregate information to facilitate few-shot action recognition. We demonstrate state-of-the-art results on few-shot action recognition across multiple datasets. Our project page is available at https://www.cs.umd.edu/~pulkit/tats

View on arXiv
Comments on this paper