ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.18288
21
2

Leveraging Foundation Models via Knowledge Distillation in Multi-Object Tracking: Distilling DINOv2 Features to FairMOT

25 July 2024
Niels G. Faber
Seyed Sahand Mohamadi Ziabari
F. Karimi Nejadasl
ArXivPDFHTML
Abstract

Multiple Object Tracking (MOT) is a computer vision task that has been employed in a variety of sectors. Some common limitations in MOT are varying object appearances, occlusions, or crowded scenes. To address these challenges, machine learning methods have been extensively deployed, leveraging large datasets, sophisticated models, and substantial computational resources. Due to practical limitations, access to the above is not always an option. However, with the recent release of foundation models by prominent AI companies, pretrained models have been trained on vast datasets and resources using state-of-the-art methods. This work tries to leverage one such foundation model, called DINOv2, through using knowledge distillation. The proposed method uses a teacher-student architecture, where DINOv2 is the teacher and the FairMOT backbone HRNetv2 W18 is the student. The results imply that although the proposed method shows improvements in certain scenarios, it does not consistently outperform the original FairMOT model. These findings highlight the potential and limitations of applying foundation models in knowledge

View on arXiv
Comments on this paper