ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.18962
25
12

Autonomous Navigation of Unmanned Vehicle Through Deep Reinforcement Learning

18 July 2024
Letian Xu
Jiabei Liu
Haopeng Zhao
Tianyao Zheng
Tongzhou Jiang
Lipeng Liu
ArXivPDFHTML
Abstract

This paper explores the method of achieving autonomous navigation of unmanned vehicles through Deep Reinforcement Learning (DRL). The focus is on using the Deep Deterministic Policy Gradient (DDPG) algorithm to address issues in high-dimensional continuous action spaces. The paper details the model of a Ackermann robot and the structure and application of the DDPG algorithm. Experiments were conducted in a simulation environment to verify the feasibility of the improved algorithm. The results demonstrate that the DDPG algorithm outperforms traditional Deep Q-Network (DQN) and Double Deep Q-Network (DDQN) algorithms in path planning tasks.

View on arXiv
Comments on this paper