ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.18994
22
0

Online Test Synthesis From Requirements: Enhancing Reinforcement Learning with Game Theory

26 July 2024
O. Sankur
Thierry Jéron
Nicolas Markey
David Mentré
Reiya Noguchi
    TTA
    OffRL
ArXivPDFHTML
Abstract

We consider the automatic online synthesis of black-box test cases from functional requirements specified as automata for reactive implementations. The goal of the tester is to reach some given state, so as to satisfy a coverage criterion, while monitoring the violation of the requirements. We develop an approach based on Monte Carlo Tree Search, which is a classical technique in reinforcement learning for efficiently selecting promising inputs. Seeing the automata requirements as a game between the implementation and the tester, we develop a heuristic by biasing the search towards inputs that are promising in this game. We experimentally show that our heuristic accelerates the convergence of the Monte Carlo Tree Search algorithm, thus improving the performance of testing.

View on arXiv
Comments on this paper