ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.19338
42
4

Semantic Communication Enhanced by Knowledge Graph Representation Learning

27 July 2024
Nour Hello
P. Lorenzo
Emilio Calvanese Strinati
ArXivPDFHTML
Abstract

This paper investigates the advantages of representing and processing semantic knowledge extracted into graphs within the emerging paradigm of semantic communications. The proposed approach leverages semantic and pragmatic aspects, incorporating recent advances on large language models (LLMs) to achieve compact representations of knowledge to be processed and exchanged between intelligent agents. This is accomplished by using the cascade of LLMs and graph neural networks (GNNs) as semantic encoders, where information to be shared is selected to be meaningful at the receiver. The embedding vectors produced by the proposed semantic encoder represent information in the form of triplets: nodes (semantic concepts entities), edges(relations between concepts), nodes. Thus, semantic information is associated with the representation of relationships among elements in the space of semantic concept abstractions. In this paper, we investigate the potential of achieving high compression rates in communication by incorporating relations that link elements within graph embeddings. We propose sending semantic symbols solely equivalent to node embeddings through the wireless channel and inferring the complete knowledge graph at the receiver. Numerical simulations illustrate the effectiveness of leveraging knowledge graphs to semantically compress and transmit information.

View on arXiv
Comments on this paper