ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.19557
29
0

Neural stochastic Volterra equations: learning path-dependent dynamics

28 July 2024
David J. Prömel
David Scheffels
ArXivPDFHTML
Abstract

Stochastic Volterra equations (SVEs) serve as mathematical models for the time evolutions of random systems with memory effects and irregular behaviour. We introduce neural stochastic Volterra equations as a physics-inspired architecture, generalizing the class of neural stochastic differential equations, and provide some theoretical foundation. Numerical experiments on various SVEs, like the disturbed pendulum equation, the generalized Ornstein--Uhlenbeck process and the rough Heston model are presented, comparing the performance of neural SVEs, neural SDEs and Deep Operator Networks (DeepONets).

View on arXiv
Comments on this paper