ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.20274
27
0

Exploring the Plausibility of Hate and Counter Speech Detectors with Explainable AI

25 July 2024
Adrian Jaques Böck
D. Slijepcevic
Matthias Zeppelzauer
ArXivPDFHTML
Abstract

In this paper we investigate the explainability of transformer models and their plausibility for hate speech and counter speech detection. We compare representatives of four different explainability approaches, i.e., gradient-based, perturbation-based, attention-based, and prototype-based approaches, and analyze them quantitatively with an ablation study and qualitatively in a user study. Results show that perturbation-based explainability performs best, followed by gradient-based and attention-based explainability. Prototypebased experiments did not yield useful results. Overall, we observe that explainability strongly supports the users in better understanding the model predictions.

View on arXiv
Comments on this paper