ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.21151
41
0

Private Collaborative Edge Inference via Over-the-Air Computation

30 July 2024
Selim F. Yilmaz
Burak Hasircioglu
Li Qiao
Deniz Gunduz
    FedML
ArXivPDFHTML
Abstract

We consider collaborative inference at the wireless edge, where each client's model is trained independently on its local dataset. Clients are queried in parallel to make an accurate decision collaboratively. In addition to maximizing the inference accuracy, we also want to ensure the privacy of local models. To this end, we leverage the superposition property of the multiple access channel to implement bandwidth-efficient multi-user inference methods. We propose different methods for ensemble and multi-view classification that exploit over-the-air computation (OAC). We show that these schemes perform better than their orthogonal counterparts with statistically significant differences while using fewer resources and providing privacy guarantees. We also provide experimental results verifying the benefits of the proposed OAC approach to multi-user inference, and perform an ablation study to demonstrate the effectiveness of our design choices. We share the source code of the framework publicly on Github to facilitate further research and reproducibility.

View on arXiv
Comments on this paper