ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.21600
37
1

Robust Simultaneous Multislice MRI Reconstruction Using Deep Generative Priors

31 July 2024
Shoujin Huang
Guanxiong Luo
Yuwan Wang
Kexin Yang
Lingyan Zhang
Jingzhe Liu
Hua Guo
Min Wang
Mengye Lyu
Lingyan Zhang
Mengye Lyu
    MedIm
ArXivPDFHTML
Abstract

Simultaneous multislice (SMS) imaging is a powerful technique for accelerating magnetic resonance imaging (MRI) acquisitions. However, SMS reconstruction remains challenging due to complex signal interactions between and within the excited slices. In this study, we introduce ROGER, a robust SMS MRI reconstruction method based on deep generative priors. Utilizing denoising diffusion probabilistic models (DDPM), ROGER begins with Gaussian noise and gradually recovers individual slices through reverse diffusion iterations while enforcing data consistency from measured k-space data within the readout concatenation framework. The posterior sampling procedure is designed such that the DDPM training can be performed on single-slice images without requiring modifications for SMS tasks. Additionally, our method incorporates a low-frequency enhancement (LFE) module to address the practical issue that SMS-accelerated fast spin echo (FSE) and echo planar imaging (EPI) sequences cannot easily embed fully-sampled autocalibration signals. Extensive experiments on both retrospectively and prospectively accelerated datasets demonstrate that ROGER consistently outperforms existing methods, enhancing both anatomical and functional imaging with strong out-of-distribution generalization. The source code and sample data for ROGER are available atthis https URL.

View on arXiv
Comments on this paper