ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.21656
118
0

Comgra: A Tool for Analyzing and Debugging Neural Networks

31 July 2024
Florian Dietz
Sophie Fellenz
Dietrich Klakow
Marius Kloft
ArXiv (abs)PDFHTMLGithub (287★)
Main:5 Pages
2 Figures
Bibliography:2 Pages
Abstract

Neural Networks are notoriously difficult to inspect. We introduce comgra, an open source python library for use with PyTorch. Comgra extracts data about the internal activations of a model and organizes it in a GUI (graphical user interface). It can show both summary statistics and individual data points, compare early and late stages of training, focus on individual samples of interest, and visualize the flow of the gradient through the network. This makes it possible to inspect the model's behavior from many different angles and save time by rapidly testing different hypotheses without having to rerun it. Comgra has applications for debugging, neural architecture design, and mechanistic interpretability. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at https://github.com/FlorianDietz/comgra.

View on arXiv
Comments on this paper