ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.00006
36
1

Synthetic Time Series for Anomaly Detection in Cloud Microservices

21 July 2024
Yuhang Yao
Shanshan Han
Yide Ran
Dimitris Stripelis
    AI4TS
ArXiv (abs)PDFHTML
Abstract

This paper proposes a framework for time series generation built to investigate anomaly detection in cloud microservices. In the field of cloud computing, ensuring the reliability of microservices is of paramount concern and yet a remarkably challenging task. Despite the large amount of research in this area, validation of anomaly detection algorithms in realistic environments is difficult to achieve. To address this challenge, we propose a framework to mimic the complex time series patterns representative of both normal and anomalous cloud microservices behaviors. We detail the pipeline implementation that allows deployment and management of microservices as well as the theoretical approach required to generate anomalies. Two datasets generated using the proposed framework have been made publicly available through GitHub.

View on arXiv
Comments on this paper