ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.00771
24
0

2D Neural Fields with Learned Discontinuities

15 July 2024
Chenxi Liu
Siqi Wang
Matthew Fisher
Deepali Aneja
Alec Jacobson
    3DH
ArXivPDFHTML
Abstract

Effective representation of 2D images is fundamental in digital image processing, where traditional methods like raster and vector graphics struggle with sharpness and textural complexity respectively. Current neural fields offer high-fidelity and resolution independence but require predefined meshes with known discontinuities, restricting their utility. We observe that by treating all mesh edges as potential discontinuities, we can represent the magnitude of discontinuities with continuous variables and optimize. Based on this observation, we introduce a novel discontinuous neural field model that jointly approximate the target image and recovers discontinuities. Through systematic evaluations, our neural field demonstrates superior performance in denoising and super-resolution tasks compared to InstantNGP, achieving improvements of over 5dB and 10dB, respectively. Our model also outperforms Mumford-Shah-based methods in accurately capturing discontinuities, with Chamfer distances 3.5x closer to the ground truth. Additionally, our approach shows remarkable capability in handling complex artistic drawings and natural images.

View on arXiv
Comments on this paper