ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.01077
333
0
v1v2v3 (latest)

PhysMamba: State Space Duality Model for Remote Physiological Measurement

17 January 2025
Zhixin Yan
Yan Zhong
Hongbin Xu
Wenjun Zhang
Shangru Yi
Lin Shu
Wenxiong Kang
    Mamba
ArXiv (abs)PDFHTML
Main:5 Pages
5 Figures
Bibliography:2 Pages
Abstract

Remote Photoplethysmography (rPPG) enables non-contact physiological signal extraction from facial videos, offering applications in psychological state analysis, medical assistance, and anti-face spoofing. However, challenges such as motion artifacts, lighting variations, and noise limit its real-world applicability. To address these issues, we propose PhysMamba, a novel dual-pathway time-frequency interaction model based on Synergistic State Space Duality (SSSD), which for the first time integrates state space models with attention mechanisms in a dual-branch framework. Combined with a Multi-Scale Query (MQ) mechanism, PhysMamba achieves efficient information exchange and enhanced feature representation, ensuring robustness under noisy and dynamic conditions. Experiments on PURE, UBFC-rPPG, and MMPD datasets demonstrate that PhysMamba outperforms state-of-the-art methods, offering superior accuracy and generalization. This work lays a strong foundation for practical applications in non-contact health monitoring, including real-time remote patient care.

View on arXiv
Comments on this paper