ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.01119
31
3

Task Prompt Vectors: Effective Initialization through Multi-Task Soft-Prompt Transfer

2 August 2024
Wei Chen
Long Chen
Ivan Srba
Yu Wu
    MoMe
    VLM
ArXivPDFHTML
Abstract

Prompt tuning is a modular and efficient solution for training large language models (LLMs). One of its main advantages is task modularity, making it suitable for multi-task problems. However, current soft-prompt-based methods often sacrifice multi-task modularity, requiring the training process to be fully or partially repeated for each newly added task. While recent work on task vectors applied arithmetic operations on full model weights to achieve the desired multi-task performance, a similar approach for soft-prompts is still missing. To this end, we introduce Task Prompt Vectors, created by element-wise difference between weights of tuned soft-prompts and their random initialization. Experimental results on 12 NLU datasets show that task prompt vectors can be used in low-resource settings to effectively initialize prompt tuning on similar tasks. In addition, we show that task prompt vectors are independent of the random initialization of prompt tuning. This allows prompt arithmetics with the pre-trained vectors from different tasks. In this way, by arithmetic addition of task prompt vectors from multiple tasks, we are able to outperform a state-of-the-art baseline in some cases.

View on arXiv
Comments on this paper