ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.01431
27
5

Building an Ethical and Trustworthy Biomedical AI Ecosystem for the Translational and Clinical Integration of Foundational Models

18 July 2024
Simha Sankar Baradwaj
Destiny Gilliland
Jack Rincon
Henning Hermjakob
Yu Yan
Irsyad Adam
Gwyneth Lemaster
Dean Wang
Karol Watson
Alex Bui
Wei Wang
Peipei Ping
ArXivPDFHTML
Abstract

Foundational Models (FMs) are gaining increasing attention in the biomedical AI ecosystem due to their ability to represent and contextualize multimodal biomedical data. These capabilities make FMs a valuable tool for a variety of tasks, including biomedical reasoning, hypothesis generation, and interpreting complex imaging data. In this review paper, we address the unique challenges associated with establishing an ethical and trustworthy biomedical AI ecosystem, with a particular focus on the development of FMs and their downstream applications. We explore strategies that can be implemented throughout the biomedical AI pipeline to effectively tackle these challenges, ensuring that these FMs are translated responsibly into clinical and translational settings. Additionally, we emphasize the importance of key stewardship and co-design principles that not only ensure robust regulation but also guarantee that the interests of all stakeholders, especially those involved in or affected by these clinical and translational applications are adequately represented. We aim to empower the biomedical AI community to harness these models responsibly and effectively. As we navigate this exciting frontier, our collective commitment to ethical stewardship, co-design, and responsible translation will be instrumental in ensuring that the evolution of FMs truly enhances patient care and medical decision making, ultimately leading to a more equitable and trustworthy biomedical AI ecosystem.

View on arXiv
Comments on this paper