ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.02983
23
0

Diffusion Model Meets Non-Exemplar Class-Incremental Learning and Beyond

6 August 2024
Jichuan Zhang
Yali Li
Xin Liu
Shengjin Wang
    DiffM
ArXivPDFHTML
Abstract

Non-exemplar class-incremental learning (NECIL) is to resist catastrophic forgetting without saving old class samples. Prior methodologies generally employ simple rules to generate features for replaying, suffering from large distribution gap between replayed features and real ones. To address the aforementioned issue, we propose a simple, yet effective \textbf{Diff}usion-based \textbf{F}eature \textbf{R}eplay (\textbf{DiffFR}) method for NECIL. First, to alleviate the limited representational capacity caused by fixing the feature extractor, we employ Siamese-based self-supervised learning for initial generalizable features. Second, we devise diffusion models to generate class-representative features highly similar to real features, which provides an effective way for exemplar-free knowledge memorization. Third, we introduce prototype calibration to direct the diffusion model's focus towards learning the distribution shapes of features, rather than the entire distribution. Extensive experiments on public datasets demonstrate significant performance gains of our DiffFR, outperforming the state-of-the-art NECIL methods by 3.0\% in average. The code will be made publicly available soon.

View on arXiv
Comments on this paper