ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.04865
19
0

TEAdapter: Supply abundant guidance for controllable text-to-music generation

9 August 2024
Jialing Zou
Jiahao Mei
Xudong Nan
Jinghua Li
Daoguo Dong
Liang He
ArXivPDFHTML
Abstract

Although current text-guided music generation technology can cope with simple creative scenarios, achieving fine-grained control over individual text-modality conditions remains challenging as user demands become more intricate. Accordingly, we introduce the TEAcher Adapter (TEAdapter), a compact plugin designed to guide the generation process with diverse control information provided by users. In addition, we explore the controllable generation of extended music by leveraging TEAdapter control groups trained on data of distinct structural functionalities. In general, we consider controls over global, elemental, and structural levels. Experimental results demonstrate that the proposed TEAdapter enables multiple precise controls and ensures high-quality music generation. Our module is also lightweight and transferable to any diffusion model architecture. Available code and demos will be found soon at https://github.com/Ashley1101/TEAdapter.

View on arXiv
Comments on this paper