ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.06024
27
0

Layer-Specific Optimization: Sensitivity Based Convolution Layers Basis Search

12 August 2024
V. Alekseev
Ilya Lukashevich
Ilia Zharikov
Ilya Vasiliev
ArXivPDFHTML
Abstract

Deep neural network models have a complex architecture and are overparameterized. The number of parameters is more than the whole dataset, which is highly resource-consuming. This complicates their application and limits its usage on different devices. Reduction in the number of network parameters helps to reduce the size of the model, but at the same time, thoughtlessly applied, can lead to a deterioration in the quality of the network. One way to reduce the number of model parameters is matrix decomposition, where a matrix is represented as a product of smaller matrices. In this paper, we propose a new way of applying the matrix decomposition with respect to the weights of convolutional layers. The essence of the method is to train not all convolutions, but only the subset of convolutions (basis convolutions), and represent the rest as linear combinations of the basis ones. Experiments on models from the ResNet family and the CIFAR-10 dataset demonstrate that basis convolutions can not only reduce the size of the model but also accelerate the forward and backward passes of the network. Another contribution of this work is that we propose a fast method for selecting a subset of network layers in which the use of matrix decomposition does not degrade the quality of the final model.

View on arXiv
Comments on this paper