ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.06509
38
1

Fooling SHAP with Output Shuffling Attacks

12 August 2024
Jun Yuan
Aritra Dasgupta
ArXivPDFHTML
Abstract

Explainable AI~(XAI) methods such as SHAP can help discover feature attributions in black-box models. If the method reveals a significant attribution from a ``protected feature'' (e.g., gender, race) on the model output, the model is considered unfair. However, adversarial attacks can subvert the detection of XAI methods. Previous approaches to constructing such an adversarial model require access to underlying data distribution, which may not be possible in many practical scenarios. We relax this constraint and propose a novel family of attacks, called shuffling attacks, that are data-agnostic. The proposed attack strategies can adapt any trained machine learning model to fool Shapley value-based explanations. We prove that Shapley values cannot detect shuffling attacks. However, algorithms that estimate Shapley values, such as linear SHAP and SHAP, can detect these attacks with varying degrees of effectiveness. We demonstrate the efficacy of the attack strategies by comparing the performance of linear SHAP and SHAP using real-world datasets.

View on arXiv
Comments on this paper