ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.07734
34
1

Analog Spiking Neuron in CMOS 28 nm Towards Large-Scale Neuromorphic Processors

14 August 2024
M. Besrour
Jacob Lavoie
Takwa Omrani
Gabriel Martin-Hardy
Esmaeil Ranjbar Koleibi
Jérémy Ménard
K. Koua
Philippe Marcoux
Mounir Boukadoum
Réjean Fontaine
ArXivPDFHTML
Abstract

The computational complexity of deep learning algorithms has given rise to significant speed and memory challenges for the execution hardware. In energy-limited portable devices, highly efficient processing platforms are indispensable for reproducing the prowess afforded by much bulkier processing platforms. In this work, we present a low-power Leaky Integrate-and-Fire (LIF) neuron design fabricated in TSMC's 28 nm CMOS technology as proof of concept to build an energy-efficient mixed-signal Neuromorphic System-on-Chip (NeuroSoC). The fabricated neuron consumes 1.61 fJ/spike and occupies an active area of 34 μm2\mu m^{2}μm2, leading to a maximum spiking frequency of 300 kHz at 250 mV power supply. These performances are used in a software model to emulate the dynamics of a Spiking Neural Network (SNN). Employing supervised backpropagation and a surrogate gradient technique, the resulting accuracy on the MNIST dataset, using 4-bit post-training quantization stands at 82.5\%. The approach underscores the potential of such ASIC implementation of quantized SNNs to deliver high-performance, energy-efficient solutions to various embedded machine-learning applications.

View on arXiv
Comments on this paper