ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.08675
84
0

Misclassification excess risk bounds for PAC-Bayesian classification via convexified loss

16 August 2024
The Tien Mai
ArXiv (abs)PDFHTML
Abstract

PAC-Bayesian bounds have proven to be a valuable tool for deriving generalization bounds and for designing new learning algorithms in machine learning. However, it typically focus on providing generalization bounds with respect to a chosen loss function. In classification tasks, due to the non-convex nature of the 0-1 loss, a convex surrogate loss is often used, and thus current PAC-Bayesian bounds are primarily specified for this convex surrogate. This work shifts its focus to providing misclassification excess risk bounds for PAC-Bayesian classification when using a convex surrogate loss. Our key ingredient here is to leverage PAC-Bayesian relative bounds in expectation rather than relying on PAC-Bayesian bounds in probability. We demonstrate our approach in several important applications.

View on arXiv
Comments on this paper