496
v1v2v3v4v5 (latest)

The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation

Main:4 Pages
5 Figures
15 Tables
Appendix:12 Pages
Abstract

This paper presents a novel methodology for generating synthetic Preference Optimization (PO) datasets using multi-model workflows. We evaluate the effectiveness and potential of these workflows in automating and enhancing the dataset generation process. PO dataset generation requires two modules: (1) response evaluation\textit{response evaluation}, and (2) response generation\textit{response generation}. In the response evaluation\textit{response evaluation} module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across all datasets. For the response generation\textit{response generation} module, we use the identified LLM evaluator configuration and compare different configurations of the LLM Feedback Loop. We use the win rate to determine the best multi-model configuration for generation. Experimenting with various configurations, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-model Llama and Gemma, respectively. After identifying the best configurations for both modules, we generate our PO datasets using the above pipeline.

View on arXiv
Comments on this paper