Modeling high-order feature interactions is critical for click-through rate (CTR) prediction, yet traditional approaches often face challenges in balancing predictive accuracy and computational efficiency. These methods typically rely on pre-defined interaction orders, which limit flexibility and require extensive prior knowledge. Moreover, explicitly modeling high-order interactions can lead to significant computational overhead. To tackle these challenges, we propose CTR-KAN, an adaptive framework for efficient high-order feature interaction modeling. CTR-KAN builds upon the Kolmogorov-Arnold Network (KAN) paradigm, addressing its limitations in CTR prediction tasks. Specifically, we introduce key enhancements, including a lightweight architecture that reduces the computational complexity of KAN and supports embedding-based feature representations. Additionally, CTR-KAN integrates guided symbolic regression to effectively capture multiplicative relationships, a known challenge in standard KAN implementations. Extensive experiments demonstrate that CTR-KAN achieves state-of-the-art predictive accuracy with significantly lower computational costs. Its sparse network structure also facilitates feature pruning and enhances global interpretability, making CTR-KAN a powerful tool for efficient inference in real-world CTR prediction scenarios.
View on arXiv@article{shi2025_2408.08713, title={ Beyond KAN: Introducing KarSein for Adaptive High-Order Feature Interaction Modeling in CTR Prediction }, author={ Yunxiao Shi and Wujiang Xu and Haimin Zhang and Qiang Wu and Min Xu }, journal={arXiv preprint arXiv:2408.08713}, year={ 2025 } }