ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.09456
24
1

In-Memory Learning Automata Architecture using Y-Flash Cell

18 August 2024
Omar Ghazal
Tian Lan
S. Ojukwu
Komal Krishnamurthy
Alex Yakovlev
R. Shafik
ArXivPDFHTML
Abstract

The modern implementation of machine learning architectures faces significant challenges due to frequent data transfer between memory and processing units. In-memory computing, primarily through memristor-based analog computing, offers a promising solution to overcome this von Neumann bottleneck. In this technology, data processing and storage are located inside the memory. Here, we introduce a novel approach that utilizes floating-gate Y-Flash memristive devices manufactured with a standard 180 nm CMOS process. These devices offer attractive features, including analog tunability and moderate device-to-device variation; such characteristics are essential for reliable decision-making in ML applications. This paper uses a new machine learning algorithm, the Tsetlin Machine (TM), for in-memory processing architecture. The TM's learning element, Automaton, is mapped into a single Y-Flash cell, where the Automaton's range is transferred into the Y-Flash's conductance scope. Through comprehensive simulations, the proposed hardware implementation of the learning automata, particularly for Tsetlin machines, has demonstrated enhanced scalability and on-edge learning capabilities.

View on arXiv
Comments on this paper