409
v1v2v3 (latest)

MergeRepair: An Exploratory Study on Merging Task-Specific Adapters in Code LLMs for Automated Program Repair

Main:37 Pages
11 Figures
Bibliography:3 Pages
17 Tables
Abstract

Large Language Models (LLMs) have shown high capabilities in several software development-related tasks such as program repair, documentation, code refactoring, debugging, and testing. However, training these models requires massive amount of data and significant computational resources. Adapters are specialized, small modules designed for parameter efficient fine-tuning of LLMs for specific tasks, domains, or applications without requiring extensive retraining of the entire model. These adapters offer a more efficient way to customize LLMs for particular needs, leveraging the pre-existing capabilities of the large model. Model (and adapter) merging have emerged as a technique to develop one model capable of multiple tasks, with minimal or no training required. Although model and adapter merging has shown promising performance in domains such as natural language processing and computer vision, its applicability to software engineering tasks remains underexplored. In this paper, we investigate the effectiveness of merged adapters within the context of software engineering, with a particular focus on the Automated Program Repair (APR) task, through our approach, MergeRepair. In particular, we merge multiple task-specific adapters using three different merging methods, including weight-averaging, ties, and dare-ties, and evaluate the performance of the merged adapter on the APR task. We introduce a continual merging approach, a novel method in which we sequentially merge the task-specific adapters where the order and weight of the merged adapters play a significant role. We further compare the performance of our approach with a baseline method consisting of equal-weight merging applied on parameters of different adapters, where all adapters are of equal importance.

View on arXiv
Comments on this paper