ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.11198
13
2

EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation

20 August 2024
Hamed Taherkhani
Melika Sepindband
Hung Viet Pham
Song Wang
Hadi Hemmati
ArXivPDFHTML
Abstract

Large Language Models (LLMs) have seen increasing use in various software development tasks, especially in code generation. The most advanced recent methods attempt to incorporate feedback from code execution into prompts to help guide LLMs in generating correct code, in an iterative process. While effective, these methods could be costly and time-consuming due to numerous interactions with the LLM and the extensive token usage. To address this issue, we propose an alternative approach named Evolutionary Prompt Engineering for Code (EPiC), which leverages a lightweight evolutionary algorithm to evolve the original prompts toward better ones that produce high-quality code, with minimal interactions with LLM. Our evaluation against state-of-the-art (SOTA) LLM-based code generation models shows that EPiC outperforms all the baselines in terms of cost-effectiveness.

View on arXiv
Comments on this paper