ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.11541
35
2

Evolution of Detection Performance throughout the Online Lifespan of Synthetic Images

21 August 2024
Dimitrios Karageorgiou
Quentin Bammey
Valentin Porcellini
Bertrand Goupil
Denis Teyssou
Symeon Papadopoulos
ArXivPDFHTML
Abstract

Synthetic images disseminated online significantly differ from those used during the training and evaluation of the state-of-the-art detectors. In this work, we analyze the performance of synthetic image detectors as deceptive synthetic images evolve throughout their online lifespan. Our study reveals that, despite advancements in the field, current state-of-the-art detectors struggle to distinguish between synthetic and real images in the wild. Moreover, we show that the time elapsed since the initial online appearance of a synthetic image negatively affects the performance of most detectors. Ultimately, by employing a retrieval-assisted detection approach, we demonstrate the feasibility to maintain initial detection performance throughout the whole online lifespan of an image and enhance the average detection efficacy across several state-of-the-art detectors by 6.7% and 7.8% for balanced accuracy and AUC metrics, respectively.

View on arXiv
Comments on this paper