106
v1v2 (latest)

Keep Everyone Happy: Online Fair Division of Numerous Items with Few Copies

Main:10 Pages
5 Figures
Bibliography:5 Pages
1 Tables
Appendix:6 Pages
Abstract

This paper considers a novel variant of the online fair division problem involving multiple agents in which a learner sequentially observes an indivisible item that has to be irrevocably allocated to one of the agents while satisfying a fairness and efficiency constraint. Existing algorithms assume a small number of items with a sufficiently large number of copies, which ensures a good utility estimation for all item-agent pairs from noisy bandit feedback. However, this assumption may not hold in many real-life applications, for example, an online platform that has a large number of users (items) who use the platform's service providers (agents) only a few times (a few copies of items), which makes it difficult to accurately estimate utilities for all item-agent pairs. To address this, we assume utility is an unknown function of item-agent features. We then propose algorithms that model online fair division as a contextual bandit problem, with sub-linear regret guarantees. Our experimental results further validate the effectiveness of the proposed algorithms.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.