ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.13019
130
2

VCEMO: Multi-Modal Emotion Recognition for Chinese Voiceprints

23 August 2024
Jinghua Tang
Liyun Zhang
Liyun Zhang
Yu Lu
Lanqing Yang
YiChao Chen
Minjie Bian
Xiaoshan Li
Guangtao Xue
ArXiv (abs)PDFHTML
Main:12 Pages
4 Figures
3 Tables
Abstract

Emotion recognition can enhance humanized machine responses to user commands, while voiceprint-based perception systems can be easily integrated into commonly used devices like smartphones and stereos. Despite having the largest number of speakers, there is a noticeable absence of high-quality corpus datasets for emotion recognition using Chinese voiceprints. Hence, this paper introduces the VCEMO dataset to address this deficiency. The proposed dataset is constructed from everyday conversations and comprises over 100 users and 7,747 textual samples. Furthermore, this paper proposes a multimodal-based model as a benchmark, which effectively fuses speech, text, and external knowledge using a co-attention structure. The system employs contrastive learning-based regulation for the uneven distribution of the dataset and the diversity of emotional expressions. The experiments demonstrate the significant improvement of the proposed model over SOTA on the VCEMO and IEMOCAP datasets. Code and dataset will be released for research.

View on arXiv
Comments on this paper