MROVSeg: Breaking the Resolution Curse of Vision-Language Models in Open-Vocabulary Semantic Segmentation

Open-vocabulary semantic segmentation aims to segment and recognize semantically meaningful regions based on text-based descriptions during inference. A typical solution to address this task is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between open- and close-vocabulary recognition. As VLMs are usually pretrained with low-resolution images (e.g. ), most previous methods operate only on downscaled images. We question this design as low resolution features often fail to preserve fine details. Although employing additional image backbones for high-resolution inputs can mitigate this issue, it may also introduce significant computation overhead. Therefore, we propose MROVSeg, a multi-resolution training framework for open-vocabulary semantic segmentation with a single pretrained CLIP backbone, that uses sliding windows to slice the high-resolution input into uniform patches, each matching the input size of the well-trained image encoder. Its key components include a Multi-Res Adapter, which restores the spatial geometry and grasps local-global correspondences across patches by learnable convolutional and scale attention layers. To achieve accurate segmentation, we introduce Multi-grained Masked Attention scheme to aggregate multi-grained semantics by performing cross-attention between object queries and multi-resolution CLIP features within the region of interests. Through comprehensive experiments, we demonstrate the superiority of MROVSeg on well-established open-vocabulary semantic segmentation benchmarks, particularly for high-resolution inputs, establishing new standards for open-vocabulary semantic segmentation.
View on arXiv