ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.14864
16
0

Dynamic operator management in meta-heuristics using reinforcement learning: an application to permutation flowshop scheduling problems

27 August 2024
Maryam Karimi Mamaghan
Mehrdad Mohammadi
W. Dullaert
Daniele Vigo
Amir Pirayesh
ArXivPDFHTML
Abstract

This study develops a framework based on reinforcement learning to dynamically manage a large portfolio of search operators within meta-heuristics. Using the idea of tabu search, the framework allows for continuous adaptation by temporarily excluding less efficient operators and updating the portfolio composition during the search. A Q-learning-based adaptive operator selection mechanism is used to select the most suitable operator from the dynamically updated portfolio at each stage. Unlike traditional approaches, the proposed framework requires no input from the experts regarding the search operators, allowing domain-specific non-experts to effectively use the framework. The performance of the proposed framework is analyzed through an application to the permutation flowshop scheduling problem. The results demonstrate the superior performance of the proposed framework against state-of-the-art algorithms in terms of optimality gap and convergence speed.

View on arXiv
Comments on this paper