609
v1v2v3v4 (latest)

Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form

International Conference on Learning Representations (ICLR), 2024
Main:10 Pages
5 Figures
Bibliography:5 Pages
1 Tables
Appendix:22 Pages
Abstract

Designing a safe policy for uncertain environments is crucial in real-world control systems. However, this challenge remains inadequately addressed within the Markov decision process (MDP) framework. This paper presents the first algorithm guaranteed to identify a near-optimal policy in a robust constrained MDP (RCMDP), where an optimal policy minimizes cumulative cost while satisfying constraints in the worst-case scenario across a set of environments. We first prove that the conventional policy gradient approach to the Lagrangian max-min formulation can become trapped in suboptimal solutions. This occurs when its inner minimization encounters a sum of conflicting gradients from the objective and constraint functions. To address this, we leverage the epigraph form of the RCMDP problem, which resolves the conflict by selecting a single gradient from either the objective or the constraints. Building on the epigraph form, we propose a bisection search algorithm with a policy gradient subroutine and prove that it identifies an ε\varepsilon-optimal policy in an RCMDP with O~(ε4)\tilde{\mathcal{O}}(\varepsilon^{-4}) robust policy evaluations.

View on arXiv
Comments on this paper