ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00292
28
0

REFFLY: Melody-Constrained Lyrics Editing Model

30 August 2024
Songyan Zhao
Bingxuan Li
Yufei Tian
Nanyun Peng
ArXivPDFHTML
Abstract

Automatic melody-to-lyric (M2L) generation aims to create lyrics that align with a given melody. While most previous approaches generate lyrics from scratch, revision, editing plain text draft to fit it into the melody, offers a much more flexible and practical alternative. This enables broad applications, such as generating lyrics from flexible inputs (keywords, themes, or full text that needs refining to be singable), song translation (preserving meaning across languages while keeping the melody intact), or style transfer (adapting lyrics to different genres). This paper introduces REFFLY (REvision Framework For LYrics), the first revision framework for editing and generating melody-aligned lyrics. We train the lyric revision module using our curated synthesized melody-aligned lyrics dataset, enabling it to transform plain text into lyrics that align with a given melody. To further enhance the revision ability, we propose training-free heuristics aimed at preserving both semantic meaning and musical consistency throughout the editing process. Experimental results demonstrate the effectiveness of REFFLY across various tasks (e.g. lyrics generation, song translation), showing that our model outperforms strong baselines, including Lyra (Tian et al., 2023) and GPT-4, by 25% in both musicality and text quality.

View on arXiv
@article{zhao2025_2409.00292,
  title={ REFFLY: Melody-Constrained Lyrics Editing Model },
  author={ Songyan Zhao and Bingxuan Li and Yufei Tian and Nanyun Peng },
  journal={arXiv preprint arXiv:2409.00292},
  year={ 2025 }
}
Comments on this paper