ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00315
11
0

An Empirical Study on Context Length for Open-Domain Dialog Generation

31 August 2024
Xinyi Shen
Zuoquan Lin
ArXivPDFHTML
Abstract

Transformer-based open-domain dialog models have become increasingly popular in recent years. These models typically represent context as a concatenation of a dialog history. However, there is no criterion to decide how many utterances should be kept adequate in a context. We try to figure out how the choice of context length affects the model. We experiment on three questions from coarse to fine: (i) Does longer context help model training? (ii) Is it necessary to change the training context length when dealing with dialogs of different context lengths? (iii) Do different dialog samples have the same preference for context length? Our experimental results show that context length, an often overlooked setting, deserves attention when implementing Transformer-based dialog models.

View on arXiv
Comments on this paper