ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00754
16
0

Cooperative Path Planning with Asynchronous Multiagent Reinforcement Learning

1 September 2024
Jiaming Yin
Weixiong Rao
Yu Xiao
Keshuang Tang
ArXivPDFHTML
Abstract

In this paper, we study the shortest path problem (SPP) with multiple source-destination pairs (MSD), namely MSD-SPP, to minimize average travel time of all shortest paths. The inherent traffic capacity limits within a road network contributes to the competition among vehicles. Multi-agent reinforcement learning (MARL) model cannot offer effective and efficient path planning cooperation due to the asynchronous decision making setting in MSD-SPP, where vehicles (a.k.a agents) cannot simultaneously complete routing actions in the previous time step. To tackle the efficiency issue, we propose to divide an entire road network into multiple sub-graphs and subsequently execute a two-stage process of inter-region and intra-region route planning. To address the asynchronous issue, in the proposed asyn-MARL framework, we first design a global state, which exploits a low-dimensional vector to implicitly represent the joint observations and actions of multi-agents. Then we develop a novel trajectory collection mechanism to decrease the redundancy in training trajectories. Additionally, we design a novel actor network to facilitate the cooperation among vehicles towards the same or close destinations and a reachability graph aimed at preventing infinite loops in routing paths. On both synthetic and real road networks, our evaluation result demonstrates that our approach outperforms state-of-the-art planning approaches.

View on arXiv
Comments on this paper