ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00913
22
0

Generalized Continuous-Time Models for Nesterov's Accelerated Gradient Methods

2 September 2024
Chanwoong Park
Youngchae Cho
Insoon Yang
ArXivPDFHTML
Abstract

Recent research has indicated a substantial rise in interest in understanding Nesterov's accelerated gradient methods via their continuous-time models. However, most existing studies focus on specific classes of Nesterov's methods, which hinders the attainment of an in-depth understanding and a unified perspective. To address this deficit, we present generalized continuous-time models that cover a broad range of Nesterov's methods, including those previously studied under existing continuous-time frameworks. Our key contributions are as follows. First, we identify the convergence rates of the generalized models, eliminating the need to determine the convergence rate for any specific continuous-time model derived from them. Second, we show that six existing continuous-time models are special cases of our generalized models, thereby positioning our framework as a unifying tool for analyzing and understanding these models. Third, we design a restart scheme for Nesterov's methods based on our generalized models and show that it ensures a monotonic decrease in objective function values. Owing to the broad applicability of our models, this scheme can be used to a broader class of Nesterov's methods compared to the original restart scheme. Fourth, we uncover a connection between our generalized models and gradient flow in continuous time, showing that the accelerated convergence rates of our generalized models can be attributed to a time reparametrization in gradient flow. Numerical experiment results are provided to support our theoretical analyses and results.

View on arXiv
Comments on this paper