ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.01074
31
0

Bootstrap SGD: Algorithmic Stability and Robustness

2 September 2024
Andreas Christmann
Yunwen Lei
ArXivPDFHTML
Abstract

In this paper some methods to use the empirical bootstrap approach for stochastic gradient descent (SGD) to minimize the empirical risk over a separable Hilbert space are investigated from the view point of algorithmic stability and statistical robustness. The first two types of approaches are based on averages and are investigated from a theoretical point of view. A generalization analysis for bootstrap SGD of Type 1 and Type 2 based on algorithmic stability is done. Another type of bootstrap SGD is proposed to demonstrate that it is possible to construct purely distribution-free pointwise confidence intervals of the median curve using bootstrap SGD.

View on arXiv
Comments on this paper