ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.01344
25
0

Pairing Analogy-Augmented Generation with Procedural Memory for Procedural Q&A

2 September 2024
K Roth
Rushil Gupta
Simon Halle
Bang Liu
    RALM
ArXivPDFHTML
Abstract

Large language models struggle to synthesize disparate pieces of information into a coherent plan when approaching a complex procedural task. In this work, we introduce a novel formalism and structure for such procedural knowledge. Based on this formalism, we present a novel procedural knowledge dataset called LCStep, which we created from LangChain tutorials. To leverage this procedural knowledge to solve new tasks, we propose analogy-augmented generation (AAG), which draws inspiration from the human ability to assimilate past experiences to solve unfamiliar problems. AAG uses a custom procedure memory store to retrieve and adapt specialized domain knowledge to answer new procedural tasks. We demonstrate that AAG outperforms few-shot and RAG baselines on LCStep, RecipeNLG, and CHAMP datasets under a pairwise LLM-based evaluation, corroborated by human evaluation in the case of RecipeNLG.

View on arXiv
Comments on this paper