ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.02699
23
1

Collaborative Learning for Enhanced Unsupervised Domain Adaptation

4 September 2024
Minhee Cho
Hyesong Choi
Hayeon Jo
Dongbo Min
ArXivPDFHTML
Abstract

Unsupervised Domain Adaptation (UDA) endeavors to bridge the gap between a model trained on a labeled source domain and its deployment in an unlabeled target domain. However, current high-performance models demand significant resources, making deployment costs prohibitive and highlighting the need for compact, yet effective models. For UDA of lightweight models, Knowledge Distillation (KD) leveraging a Teacher-Student framework could be a common approach, but we found that domain shift in UDA leads to a significant increase in non-salient parameters in the teacher model, degrading model's generalization ability and transferring misleading information to the student model. Interestingly, we observed that this phenomenon occurs considerably less in the student model. Driven by this insight, we introduce Collaborative Learning for UDA (CLDA), a method that updates the teacher's non-salient parameters using the student model and at the same time utilizes the updated teacher model to improve UDA performance of the student model. Experiments show consistent performance improvements for both student and teacher models. For example, in semantic segmentation, CLDA achieves an improvement of +0.7% mIoU for the teacher model and +1.4% mIoU for the student model compared to the baseline model in the GTA-to-Cityscapes datasets. In the Synthia-to-Cityscapes dataset, it achieves an improvement of +0.8% mIoU and +2.0% mIoU for the teacher and student models, respectively.

View on arXiv
@article{cho2025_2409.02699,
  title={ Collaborative Learning for Enhanced Unsupervised Domain Adaptation },
  author={ Minhee Cho and Hyesong Choi and Hayeon Jo and Dongbo Min },
  journal={arXiv preprint arXiv:2409.02699},
  year={ 2025 }
}
Comments on this paper