ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.03060
28
0

Better Verified Explanations with Applications to Incorrectness and Out-of-Distribution Detection

4 September 2024
Min Wu
Xiaofu Li
Haoze Wu
Clark Barrett
ArXivPDFHTML
Abstract

Building on VeriX (Verified eXplainability, arXiv:2212.01051), a system for producing optimal verified explanations for machine learning model outputs, we present VeriX+, which significantly improves both the size and the generation time of verified explanations. We introduce a bound propagation-based sensitivity technique to improve the size, and a binary search-based traversal with confidence ranking for improving time -- the two techniques are orthogonal and can be used independently or together. We also show how to adapt the QuickXplain (Junker 2004) algorithm to our setting to provide a trade-off between size and time. Experimental evaluations on standard benchmarks demonstrate significant improvements on both metrics, e.g., a size reduction of 38% on the GTSRB dataset and a time reduction of 90% on MNIST. We also explore applications of our verified explanations and show that explanation size is a useful proxy for both incorrectness detection and out-of-distribution detection.

View on arXiv
Comments on this paper