ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.04208
48
1

Learning to Learn Transferable Generative Attack for Person Re-Identification

6 September 2024
Yuan Bian
Min Liu
Xueping Wang
Yunfeng Ma
Yaonan Wang
    AAML
    OOD
ArXivPDFHTML
Abstract

Deep learning-based person re-identification (re-id) models are widely employed in surveillance systems and inevitably inherit the vulnerability of deep networks to adversarial attacks. Existing attacks merely consider cross-dataset and cross-model transferability, ignoring the cross-test capability to perturb models trained in different domains. To powerfully examine the robustness of real-world re-id models, the Meta Transferable Generative Attack (MTGA) method is proposed, which adopts meta-learning optimization to promote the generative attacker producing highly transferable adversarial examples by learning comprehensively simulated transfer-based cross-model\&dataset\&test black-box meta attack tasks. Specifically, cross-model\&dataset black-box attack tasks are first mimicked by selecting different re-id models and datasets for meta-train and meta-test attack processes. As different models may focus on different feature regions, the Perturbation Random Erasing module is further devised to prevent the attacker from learning to only corrupt model-specific features. To boost the attacker learning to possess cross-test transferability, the Normalization Mix strategy is introduced to imitate diverse feature embedding spaces by mixing multi-domain statistics of target models. Extensive experiments show the superiority of MTGA, especially in cross-model\&dataset and cross-model\&dataset\&test attacks, our MTGA outperforms the SOTA methods by 21.5\% and 11.3\% on mean mAP drop rate, respectively. The code of MTGA will be released after the paper is accepted.

View on arXiv
@article{bian2025_2409.04208,
  title={ Learning to Learn Transferable Generative Attack for Person Re-Identification },
  author={ Yuan Bian and Min Liu and Xueping Wang and Yunfeng Ma and Yaonan Wang },
  journal={arXiv preprint arXiv:2409.04208},
  year={ 2025 }
}
Comments on this paper