Due to the lack of effective mpox detection tools, the mpox virus continues to spread worldwide and has once again been declared a public health emergency of international concern by the World Health Organization. Lightweight deep learning model-based detection systems are crucial to alleviate mpox outbreaks since they are suitable for widespread deployment, especially in resource-limited scenarios. However, the key to its successful application depends on ensuring that the model can effectively model local features and long-range dependencies in mpox lesions while maintaining lightweight. Inspired by the success of Mamba in modeling long-range dependencies and its linear complexity, we proposed a lightweight hybrid architecture called MpoxMamba for efficient mpox detection. MpoxMamba utilizes depth-wise separable convolutions to extract local feature representations in mpox skin lesions and greatly enhances the model's ability to model the global contextual information by grouped Mamba modules. Notably, MpoxMamba's parameter size and FLOPs are 0.77M and 0.53G, respectively. Experimental results on two widely recognized benchmark datasets demonstrate that MpoxMamba outperforms state-of-the-art lightweight models and existing mpox detection methods. Importantly, we developed a web-based online application to provide free mpox detection (http://5227i971s5.goho.co:30290). The source codes of MpoxMamba are available at https://github.com/YubiaoYue/MpoxMamba.
View on arXiv